CompTIA Data+ (Data Plus) Exam Syllabus

Data+ PDF, DA0-002 Dumps, DA0-002 PDF, Data+ VCE, DA0-002 Questions PDF, CompTIA DA0-002 VCE, CompTIA Data Plus Dumps, CompTIA Data Plus PDFUse this quick start guide to collect all the information about CompTIA Data+ (DA0-002) Certification exam. This study guide provides a list of objectives and resources that will help you prepare for items on the DA0-002 CompTIA Data+ exam. The Sample Questions will help you identify the type and difficulty level of the questions and the Practice Exams will make you familiar with the format and environment of an exam. You should refer this guide carefully before attempting your actual CompTIA Data Plus certification exam.

The CompTIA Data+ certification is mainly targeted to those candidates who want to build their career in Data domain. The CompTIA Data+ exam verifies that the candidate possesses the fundamental knowledge and proven skills in the area of CompTIA Data Plus.

CompTIA Data+ Exam Summary:

Exam Name CompTIA Data+
Exam Code DA0-002
Exam Price $255 (USD)
Duration 90 mins
Number of Questions 90
Passing Score 720 (on a scale of 100–900)
Books / Training CompTIA CertMaster Learn
Schedule Exam Pearson VUE
Sample Questions CompTIA Data+ Sample Questions
Practice Exam CompTIA DA0-002 Certification Practice Exam

CompTIA DA0-002 Exam Syllabus Topics:

Topic Details

Data Concepts and Environments - 20%

Explain data concepts. - Database types
  • Relational
  • Non-relational
- File extensions
  • .csv
  • .xlsx
  • .json
  • .txt
  • .jpg
  • .dat

- Data structures

  • Structured
    - Table
    Fact table
    Dimensional table
    * Slowly changing dimension
    Bridge table
    - Schema
  • Semi-structured
    - JavaScript Object Notation (JSON)
    Nested structures
  • Unstructured
- Data types
  • String
    - char
    - varchar
    - nvarchar
  • Null values
  • Spatial
  • Boolean
  • Numeric
    - Integer
    - Decimal
    - Float
  • Datetime
    - Timestamp
  • Large objects
    - Binary large object (BLOB)
    - Character large object (CLOB)
  • Globally Unique Identifier (GUID)/ Universally Unique Identifier (UUID)
Identify types of data sources.
- Databases
- Application programming interfaces (APIs)
- Website data
- Files
- Logs
- Data repositories
  • Data lakes
  • Data lakehouses
  • Data marts
  • Data silos
  • Data warehouses
Identify infrastructure concepts.
- Cloud providers
  • Amazon Web Services (AWS)
  • Azure
  • Google
- Cloud and on-premises infrastructure
  • Private
  • Public
  • Hybrid
- Storage types
  • Object
  • File
  • Local
  • Shared
  • Block
- Containerization
Identify common data analysis tools.
- Coding environments
  • Integrated development environment (IDE)
    - RStudio
    - Visual Studio (VS) Code
  • Text editor
  • Notebooks
- Business intelligence software
  • Tableau
  • Power BI
  • Looker
- Packages/libraries
  • Anaconda
  • pandas
  • tidyverse
- Programming languages
  • SAS
  • Python
  • R
  • Scala
- Database management system (DBMS)
  • Structured Query Language (SQL) Server Management Studio
  • MySQL Workbench
  • MongoDB Compass
  • DBeaver
  • Toad
  • Azure Data Studio
Identify artificial intelligence (AI) concepts.
- Generative AI
  • Large language model (LLM)
- Foundational models
- Deep learning
- Natural language processing (NLP)
- Robotic process automation (RPA)
  • Automated reporting

Data Acquisition and Preparation - 22%

Given a scenario, use data acquisition methods.
- Data integration
- Querying
  • Join
  • Concatenate
  • Filter
  • Union
  • Grouping
  • Aggregate
  • Nested queries
- Basic query optimization
  • Indexing
  • Parameterization
  • Subsets
  • Temporary tables
- Extract, transform, load (ETL)/extract, load, transform (ELT)
- Data collection
  • Surveying
  • Sampling
Given a scenario, perform data exploration to identify possible inconsistencies with a data set.
- Missing values
- Duplication
- Redundancy
- Outliers
- Completeness
- Validation
Given a scenario, perform appropriate data transformation and cleansing techniques.
- String manipulation
  • Regular expressions (RegEx)
- Conversion
- Clustering
  • Binning
- Augmentation
- Exploding
- Scaling
- Standardization
- Imputation
- Parsing
- Merging
- Appending
- Derived variables
  • Calculated fields
- Deletion

Data Analysis - 24%

Given a set of requirements, determine the appropriate communication approach for data analysis.
- Mock-up
- Accessibility
  • Auditory
  • Visual
- Technical vs. nontechnical audience
- Level of detail
- Internal vs. external
- User persona type
  • C-suite vs. individual contributor
- Sensitive vs. non-sensitive
- Key performance indicators (KPIs)
Given a scenario, select the appropriate statistical method or function.
- Basic statistical methods
  • Prescriptive
  • Descriptive
  • Predictive
  • Inferential
- Functions and measures
  • Mathematical
    - Measures of central tendency
    - Measures of dispersion
  • Logical
  • Date
  • String
Given a scenario, troubleshoot basic issues using the appropriate tool or method.
- Issues
  • Connectivity-related
  • User-reported
  • Basic SQL code
  • Corrupted data
- Tools and methods
  • Enable logging
  • Validate data source
  • Consult vendor communities/online resources

Visualization and Reporting - 20%

Given a scenario, use the appropriate visual elements.
- Types
  • Charts
  • Maps
  • Pivot tables
  • Infographics
- Design elements
  • Labels
  • Legends
  • Branding
  • Color schemes
Given a scenario, use the appropriate delivery or consumption method.
- Executive summary
- Self-service portal
- Dashboards
  • Static
  • Dynamic
  • Frequency
    - Recurring
    - Ad hoc
- Data versioning techniques
  • Snapshot
  • Real-time
Given a scenario, troubleshoot issues using report validation techniques.
- Issues
  • Excessive load time
  • Slow refresh rate
  • Large data size
  • Filter not working correctly
  • Stale data
  • Corrupt data
- Techniques
  • Data filtering
  • Review
    - Code
    - Calc
    - Peer
  • Source validation
  • Data structure changes
  • Monitoring alerts

Data Governance - 14%

Explain data management concepts.
- Integration
- Documentation
  • Data flow diagram
  • Data explainability report
  • Data dictionary
  • Hierarchy structure
  • Data lineage
- Source of truth
- Data versioning
  • Snapshots
  • Refresh intervals
- Metadata
Summarize concepts related to data compliance.
- Retention
- General Data Protection Regulation (GDPR)
- Jurisdictional requirements
- Replication
- Storage
- Data ethics
- Payment Card Industry Data Security Standard (PCI DSS)
- Audit
- Classification
- Incident reporting
  • Data breach
  • Security
Compare and contrast data privacy and protection practices.
- Role-based access control
- Encryption
  • In transit
  • At rest
- Data usage
- Data sharing
- National Institute Standards and Technology (NIST)
- Personal identifiable information (PII)
- Personal health information (PHI)
- Anonymization
- Masking
Compare and contrast data quality assurance practices.
- Requirement testing
- Stress test
- User acceptance test (UAT)
- Source control
- Unit test
- Data health check
  • Data drifts
- Automated data quality monitoring
- Data profiling
  • Quality metrics
- International Organization for Standardization (ISO)

To ensure success in CompTIA Data Plus certification exam, we recommend authorized training course, practice test and hands-on experience to prepare for CompTIA Data+ (DA0-002) exam.

Rating: 4.8 / 5 (43 votes)